Перевод: с английского на английский

с английского на английский

quality of working life

  • 1 quality of working life

    HR
    the degree of personal satisfaction experienced at work. Quality of working life is dependent on the extent to which an employee feels valued, rewarded, motivated, consulted, and empowered. It is also influenced by factors such as job security, opportunities for career development, work patterns, and work-life balance.

    The ultimate business dictionary > quality of working life

  • 2 quality of life

    HR [m1]1. at a personal level, the degree of enjoyment and satisfaction experienced in everyday life, embracing health, personal relationships, the environment, quality of working life, social life, and leisure time
    2. at community level, a set of social indicators such as nutrition, air quality, incidence of disease, crime rates, health care, educational services, and divorce rates

    The ultimate business dictionary > quality of life

  • 3 psychological contract

    HR
    the set of unwritten expectations concerning the relationship between an employee and an employer. The psychological contract addresses factors that are not defined in a written contract of employment such as levels of employee commitment, productivity, quality of working life, job satisfaction, attitudes to flexible working, and the provision and take-up of suitable training. Expectations from both employer and employee can change, so the psychological contract must be reevaluated at intervals to minimize misunderstandings.

    The ultimate business dictionary > psychological contract

  • 4 braindrain

    Gen Mgt
    overseas migration of specialists, usually highly qualified scientists, engineers, or technical experts, in pursuit of higher salaries, better research funding, and a perceived higher quality of working life

    The ultimate business dictionary > braindrain

  • 5 Dale, David

    SUBJECT AREA: Textiles
    [br]
    b. 6 January 1739 Stewarton, Ayrshire, Scotland
    d. 17 March 1806 Glasgow, Scotland
    [br]
    Scottish developer of a large textile business in find around Glasgow, including the cotton-spinning mills at New Lanark.
    [br]
    David Dale, the son of a grocer, began his working life by herding cattle. His connection with the textile industry started when he was apprenticed to a Paisley weaver. After this he travelled the country buying home-spun linen yarns, which he sold in Glasgow. At about the age of 24 he settled in Glasgow as Clerk to a silk merchant. He then started a business importing fine yarns from France and Holland for weaving good-quality cloths such as cambrics. Dale was to become one of the pre-eminent yarn dealers in Scotland. In 1778 he acquired the first cotton-spinning mill built in Scotland by an English company at Rothesay on the Isle of Bute. In 1784 he met Richard Arkwright, who was touring Scotland, and together they visited the Falls of the Clyde near the town of Lanark. Arkwright immediately recognized the potential of the site for driving water-powered mills. Dale acquired part of the area from Lord Braxfield and in 1785 began to build his first mill there in partnership with Arkwright. The association with Arkwright soon ceased, however, and by c.1795 Dale had erected four mills. Because the location of the mills was remote, he built houses for the workers and then employed pauper children brought from the slums of Edinburgh and Glasgow; at one time there were over 400 of them. Dale's attitude to his workers was benevolent and humane. He tried to provide reasonable working conditions and the mills were well designed with a large workshop in which machinery was constructed. Dale was also a partner in mills at Catrine, Newton Stewart, Spinningdale in Sutherlandshire and some others. In 1785 he established the first Turkey red dye works in Scotland and was in partnership with George Macintosh, the father of Charles Macintosh. Dale manufactured cloth in Glasgow and from 1783 was Agent for the Royal Bank of Scotland, a lucrative position. In 1799 he was persuaded by Robert Owen to sell the New Lanark mills for £60,000 to a Manchester partnership which made Owen the Manager. Owen had married Dale's daughter, Anne Caroline, in 1799. Possibly due in part to poor health, Dale retired in 1800 to Rosebank near Glasgow, having made a large fortune. In 1770 he had withdrawn from the established Church of Scotland and founded a new one called the "Old Independents". He visited the various branches of this Church, as well as convicts in Bridewell prison, to preach. He was also a great benefactor to the poor in Glasgow. He had a taste for music and sang old Scottish songs with great gusto.
    [br]
    Further Reading
    Dictionary of National Biography.
    R.Owen, 1857, The Life of Robert Owen, written by himself, London (mentions Dale).
    Through his association with New Lanark and Robert Owen, details about Dale may be found in J.Butt (ed.), 1971, Robert Owen, Prince of Cotton Spinners, Newton Abbot; S.Pollard and J.Salt (eds), 1971, Robert Owen, Prophet of the Poor: essays in honour of the two-hundredth anniversary of his birth, London.
    RLH

    Biographical history of technology > Dale, David

  • 6 downshifting

    Gen Mgt
    the concept of giving up all or part of your work commitment and income in exchange for improved quality of life. The term was coined by Charles Handy. Downshifting has increased in popularity because of rising stress in the workplace caused partly by the downsizing trend of the late 20th century, and may be contrasted with the concept of the organization man. Downshifting is integral to the idea of portfolio working, in which individuals opt out of a formal employee relationship to sell their services at a pace and at a price to suit themselves.
         Most people consider downshifting because of family demands, or because they have been asked to do something by their organization that goes strongly against their values, pushing them to question why they are working so hard for that organization. Others downshift as they approach retirement, in order to smooth the transition. People who downshift need to be very sure that that is what they really want and know why they want it, as it can be hard to reverse the decision.
         Someone wanting to take the risk of downshifting should make a thorough assessment of his or her short-term and long-term financial situation by way of preparation. They will need to have a good bed of savings to rely on in the first year. It may be necessary to consider moving to a smaller, cheaper place. Deciding what to keep of the old life and what to let go is another important part of the preparation. Some downshifters will want to completely leave their old work life behind them, starting a new job in a slower-paced organization, or setting up on their own. Others will want to stay with their organization but perhaps move to a less demanding job. Once these things have been considered and decided upon, it is time for the downshifter to make an action plan with a schedule which includes regular reassessment periods.

    The ultimate business dictionary > downshifting

  • 7 Goldmark, Peter Carl

    [br]
    b. 2 December 1906 Budapest, Hungary
    d. 7 December 1977 Westchester Co., New York, USA
    [br]
    Austro-Hungarian engineer who developed the first commercial colour television system and the long-playing record.
    [br]
    After education in Hungary and a period as an assistant at the Technische Hochschule, Berlin, Goldmark moved to England, where he joined Pye of Cambridge and worked on an experimental thirty-line television system using a cathode ray tube (CRT) for the display. In 1936 he moved to the USA to work at Columbia Broadcasting Laboratories. There, with monochrome television based on the CRT virtually a practical proposition, he devoted his efforts to finding a way of producing colour TV images: in 1940 he gave his first demonstration of a working system. There then followed a series of experimental field-sequential colour TV systems based on segmented red, green and blue colour wheels and drums, where the problem was to find an acceptable compromise between bandwidth, resolution, colour flicker and colour-image breakup. Eventually he arrived at a system using a colour wheel in combination with a CRT containing a panchromatic phosphor screen, with a scanned raster of 405 lines and a primary colour rate of 144 fields per second. Despite the fact that the receivers were bulky, gave relatively poor, dim pictures and used standards totally incompatible with the existing 525-line, sixty fields per second interlaced monochrome (black and white) system, in 1950 the Federal Communications Commission (FCC), anxious to encourage postwar revival of the industry, authorized the system for public broadcasting. Within eighteen months, however, bowing to pressure from the remainder of the industry, which had formed its own National Television Systems Committee (NTSC) to develop a much more satisfactory, fully compatible system based on the RCA three-gun shadowmask CRT, the FCC withdrew its approval.
    While all this was going on, Goldmark had also been working on ideas for overcoming the poor reproduction, noise quality, short playing-time (about four minutes) and limited robustness and life of the long-established 78 rpm 12 in. (30 cm) diameter shellac gramophone record. The recent availability of a new, more robust, plastic material, vinyl, which had a lower surface noise, enabled him in 1948 to reduce the groove width some three times to 0.003 in. (0.0762 mm), use a more lightly loaded synthetic sapphire stylus and crystal transducer with improved performance, and reduce the turntable speed to 33 1/3 rpm, to give thirty minutes of high-quality music per side. This successful development soon led to the availability of stereophonic recordings, based on the ideas of Alan Blumlein at EMI in the 1930s.
    In 1950 Goldmark became a vice-president of CBS, but he still found time to develop a scan conversion system for relaying television pictures to Earth from the Lunar Orbiter spacecraft. He also almost brought to the market a domestic electronic video recorder (EVR) system based on the thermal distortion of plastic film by separate luminance and coded colour signals, but this was overtaken by the video cassette recorder (VCR) system, which uses magnetic tape.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Morris N.Liebmann Award 1945. Institute of Electrical and Electronics Engineers Vladimir K. Zworykin Award 1961.
    Bibliography
    1951, with J.W.Christensen and J.J.Reeves, "Colour television. USA Standard", Proceedings of the Institute of Radio Engineers 39: 1,288 (describes the development and standards for the short-lived field-sequential colour TV standard).
    1949, with R.Snepvangers and W.S.Bachman, "The Columbia long-playing microgroove recording system", Proceedings of the Institute of Radio Engineers 37:923 (outlines the invention of the long-playing record).
    Further Reading
    E.W.Herold, 1976, "A history of colour television displays", Proceedings of the Institute of Electrical and Electronics Engineers 64:1,331.
    KF

    Biographical history of technology > Goldmark, Peter Carl

  • 8 MacGregor, Robert

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1873 Hebburn-on-Tyne, England
    d. 4 October 1956 Whitley Bay, England
    [br]
    English naval architect who, working with others, significantly improved the safety of life at sea.
    [br]
    On leaving school in 1894, MacGregor was apprenticed to a famous local shipyard, the Palmers Shipbuilding and Iron Company of Jarrow-on-Tyne. After four years he was entered for the annual examination of the Worshipful Company of Shipwrights, coming out top and being nominated Queen's Prizeman. Shortly thereafter he moved around shipyards to gain experience, working in Glasgow, Hull, Newcastle and then Dunkirk. His mastery of French enabled him to obtain in 1906 the senior position of Chief Draughtsman at an Antwerp shipyard, where he remained until 1914. On his return to Britain, he took charge of the small yard of Dibbles in Southampton and commenced a period of great personal development and productivity. His fertile mind enabled him to register no fewer than ten patents in the years 1919 to 1923.
    In 1924 he started out on his own as a naval architect, specializing in the coal trade of the North Sea. At that time, colliers had wooden hatch covers, which despite every caution could be smashed by heavy seas, and which in time of war added little to hull integrity after a torpedo strike. The International Loadline Committee of 1932 noted that 13 per cent of ship losses were through hatch failures. In 1927, designs for selftrimming colliers were developed, as well as designs for steel hatch covers. In 1928 the first patents were under way and the business was known for some years as MacGregor and King. During this period, steel hatch covers were fitted to 105 ships.
    In 1937 MacGregor invited his brother Joseph (c. 1883–1967) to join him. Joseph had wide experience in ship repairs and had worked for many years as General Manager of the Prince of Wales Dry Docks in Swansea, a port noted for its coal exports. By 1939 they were operating from Whitley Bay with the name that was to become world famous: MacGregor and Company (Naval Architects) Ltd. The new company worked in association with the shipyards of Austin's of Sunderland and Burntisland of Fife, which were then developing the "flatiron" colliers for the up-river London coal trade. The MacGregor business gained a great boost when the massive coastal fleet of William Cory \& Son was fitted with steel hatches.
    In 1945 the brothers appointed Henri Kummerman (b. 1908, Vienna; d. 1984, Geneva) as their sales agent in Europe. Over the years, Kummerman effected greater control on the MacGregor business and, through his astute business dealings and his well-organized sales drives worldwide, welded together an international company in hatch covers, cargo handling and associated work. Before his death, Robert MacGregor was to see mastery of the design of single-pull steel hatch covers and to witness the acceptance of MacGregor hatch covers worldwide. Most important of all, he had contributed to great increases in the safety and the quality of life at sea.
    [br]
    Further Reading
    L.C.Burrill, 1931, "Seaworthiness of collier types", Transactions of the Institution of Naval Architechts.
    S.Sivewright, 1989, One Man's Mission-20,000 Ships, London: Lloyd's of London Press.
    FMW

    Biographical history of technology > MacGregor, Robert

  • 9 Barnack, Oskar

    [br]
    b. 1879 Berlin, Germany
    d. January 1936 Wetzlar, Germany
    [br]
    German camera designer who conceived the first Leica camera and many subsequent models.
    [br]
    Oskar Barnack was an optical engineer, introspective and in poor health, when in 1910 he was invited through the good offices of his friend the mechanical engineer Emil Mechau, who worked for Ernst Leitz, to join the company at Wetzlar to work on research into microscope design. He was engaged after a week's trial, and on 2 January 1911 he was put in charge of microscope research. He was an enthusiastic photographer, but excursions with his large and heavy plate camera equipment taxed his strength. In 1912, Mechau was working on a revolutionary film projector design and needed film to test it. Barnack suggested that it was not necessary to buy an expensive commercial machine— why not make one? Leitz agreed, and Barnack constructed a 35 mm movie camera, which he used to cover events in and around Wetzlar.
    The exposure problems he encountered with the variable sensitivity of the cine film led him to consider the design of a still camera in which short lengths of film could be tested before shooting—a kind of exposure-meter camera. Dissatisfied with the poor picture quality of his first model, which took the standard cine frame of 18×24 mm, he built a new model in which the frame size was doubled to 36×24 mm. It used a simple focal-plane shutter adjustable to 1/500 of a second, and a Zeiss Milar lens of 42 mm focal length. This is what is now known as the UR-Leica. Using his new camera, 1/250 of the weight of his plate equipment, Barnack made many photographs around Wetzlar, giving postcard-sized prints of good quality.
    Ernst Leitz Junior was lent the camera for his trip in June 1914 to America, where he was urged to put it into production. Visiting George Eastman in Rochester, Leitz passed on Barnack's requests for film of finer grain and better quality. The First World War put an end to the chances of developing the design at that time. As Germany emerged from the postwar chaos, Leitz Junior, then in charge of the firm, took Barnack off microscope work to design prototypes for a commercial model. Leitz's Chief Optician, Max Berek, designed a new lens, the f3.5 Elmax, for the new camera. They settled on the name Leica, and the first production models went on show at the Leipzig Spring Fair in 1925. By the end of the year, 1,000 cameras had been shipped, despite costing about two months' good wages.
    The Leica camera established 35 mm still photography as a practical proposition, and film manufacturers began to create the special fine-grain films that Barnack had longed for. He continued to improve the design, and a succession of new Leica models appeared with new features, such as interchangeable lenses, coupled range-finders, 250 exposures. By the time of his sudden death in 1936, Barnack's life's work had forever transformed the nature of photography.
    [br]
    Further Reading
    J.Borgé and G.Borgé, 1977, Prestige de la, photographie.
    BC

    Biographical history of technology > Barnack, Oskar

  • 10 Boulle, André-Charles

    [br]
    b. 11 November 1642 Paris, France
    d. 29 February 1732 Paris, France
    [br]
    French cabinet-maker noted for his elaborate designs and high-quality technique in marquetry using brass and tortoiseshell.
    [br]
    As with the Renaissance artists and architects of fifteenth-and sixteenth-century Italy, Boulle worked as a young man in varied media, as a painter, engraver and metalworker an in mosaic techniques. It was in the 1660s that he turned more specifically to furniture and in the following decade, under the patronage of Louis XIV, that he became a leading ébéniste or cabinet-maker, In 1672 the King's Controller-General, Jean-Baptiste Colbert, recommended Boulle as an outstanding cabinet-maker and he was appointed ébéniste du roi. From then he spent the rest of his life working in the royal palaces, notably the Louvre and Versailles, and also carried out commissions for the French aristocracy and from abroad, particularly Spain and Germany.
    Before the advent of Boulle, the quality furniture made for the French court and aristocracy had come from foreign craftsmen, particularly Domenico Cucci of Italy and Pierre Colle of the Low Countries. Boulle made his name as their equal in his development of new forms of furniture such as his bureaux and commodes, the immense variety of his designs and their architectural quality, the beauty of his sculptural, gilded mounts, and the development of his elaborate marquetry. He was a leading exponent of the contemporary styles, which meant the elaborately rich baroque forms in the time of Louis XIV and the more delicate rococo elegance in that of Louis XV. The technique to which Boulle gave his name (sometimes referred to in its German spelling of Bühl) incorporated a rich variety of veneering materials into his designs: in particular, he used tortoiseshell and brass with ebony. Even greater richness was created with the introduction of an engraved design upon the brass surfaces. Further delicate elaboration derived from the use of paired panels of decoration to be used in reverse form in one piece, or two matching pieces, of furniture. In one panel, designated as première partie, the marquetry took the form of brass upon tortoiseshell, while in the other (contre-partie) the tortoiseshell was set into the brass background.
    [br]
    Further Reading
    J.Fleming and H.Honour, 1977, The Penguin Dictionary of Decorative Arts: Allen Lane, pp. 107–9.
    1982, The History of Furniture: Orbis (contains many references to Boulle).
    DY

    Biographical history of technology > Boulle, André-Charles

  • 11 Wedgwood, Josiah

    [br]
    baptized 12 July 1730 Burslem, Staffordshire, England
    d. 3 January 1795 Etruria Hall, Staffordshire, England
    [br]
    English potter and man of science.
    [br]
    Wedgwood came from prolific farming stock who, in the seventeenth century, had turned to pot-making. At the age of 9 his education was brought to an end by his father's death and he was set to work in one of the family potteries. Two years later an attack of smallpox left him with a weakness in his right knee which prevented him from working the potter's wheel. This forced his attention to other aspects of the process, such as design and modelling. He was apprenticed to his brother Thomas in 1744, and in 1752 was in partnership with Thomas Whieldon, a leading Staffordshire potter, until probably the first half of 1759, when he became a master potter and set up in business on his own account at Ivy House Works in Burslem.
    Wedgwood was then able to exercise to the full his determination to improve the quality of his ware. This he achieved by careful attention to all aspects of the work: artistic judgement of form and decoration; chemical study of the materials; and intelligent management of manufacturing processes. For example, to achieve greater control over firing conditions, he invented a pyrometer, a temperature-measuring device by which the shrinkage of prepared clay cylinders in the furnace gave an indication of the temperature. Wedgwood was the first potter to employ steam power, installing a Boulton \& Watt engine for crushing and other operations in 1782. Beyond the confines of his works, Wedgwood concerned himself in local issues such as improvements to the road and canal systems to facilitate transport of raw materials and products.
    During the first ten years, Wedgwood steadily improved the quality of his cream ware, known as "Queen's ware" after a set of ware was presented to Queen Charlotte in 1762. The business prospered and his reputation grew. In 1766 he was able to purchase an estate on which he built new works, a mansion and a village to which he gave the name Etruria. Four years after the Etruria works were opened in 1769, Wedgwood began experimenting with a barium compound combined in a fine-textured base allied to a true porcelain. The result was Wedgwood's most original and distinctive ware similar to jasper, made in a wide variety of forms.
    Wedgwood had many followers and imitators but the merit of initiating and carrying through a large-scale technical and artistic development of English pottery belongs to Wedgwood.
    [br]
    Principal Honours and Distinctions
    FRS 1783.
    Bibliography
    Wedgwood contributed five papers to the Philosophical Transactions of the Royal Society, two in 1783 and 1790 on chemical subjects and three in 1782, 1784 and 1786 on his pyrometer.
    Further Reading
    Meteyard, 1865, Life of Josiah Wedgwood, London (biography).
    A.Burton, 1976, Josiah Wedgwood: Biography, London: André Deutsch (a very readable account).
    LRD

    Biographical history of technology > Wedgwood, Josiah

  • 12 kaizen

    Gen Mgt, Ops
    the Japanese term for the continuous improvement of current processes. Kaizen is derived from the words “kai,” meaning “change,” and “zen,” meaning “good” or “for the better.” It is a philosophy that can be applied to any area of life, but its application has been most famously developed at the Toyota Motor Company, and it underlies the philosophy of total quality management. Under kaizen, continuous improvement can mean waste elimination, innovation, or working to new standards. The kaizen process makes use of a range of techniques, including small-group problem solving, statistical techniques, brainstorming, and work study. Although kaizen forms only part of a strategy of continuous improvement, for many employees it is the element that most closely affects them and is therefore synonymous with continuous improvement.

    The ultimate business dictionary > kaizen

  • 13 maintenance

    Ops
    the process of keeping physical assets in working order to ensure their availability and to reduce the chance of failure. An effective maintenance program can enhance safety, increase reliability, reduce quality errors, lower operating costs, and increase the life span of assets. There are different maintenance approaches, including reactive maintenance, predictive maintenance, and preventive maintenance. Reliability centered maintenance and total productive maintenance are two strategies that have more recently become prominent.

    The ultimate business dictionary > maintenance

  • 14 Bedson, George

    SUBJECT AREA: Metallurgy
    [br]
    b. 3 November 1820 Sutton Coldfield, Warwickshire, England
    d. 12 December 1884 Manchester (?), England
    [br]
    English metallurgist, inventor of the continuous rolling mill.
    [br]
    He acquired a considerable knowledge of wire-making in his father's works before he took a position in 1839 at the works of James Edleston at Warrington. From there, in 1851, he went to Manchester as Manager of Richard Johnson \& Sons' wire mill, where he remained for the rest of his life. It was there that he initiated several important improvements in the manufacture of wire. These included a system of circulating puddling furnace water bottoms and sides, and a galvanizing process. His most important innovation, however, was the continuous mill for producing iron rod for wiredrawing. Previously the red-hot iron billets had to be handled repeatedly through a stand or set of rolls to reduce the billet to the required shape, with time and heat being lost at each handling. In Bedson's continuous mill, the billet entered the first of a succession of stands placed as closely to each other as possible and emerged from the final one as rod suitable for wiredrawing, without any intermediate handling. A second novel feature was that alternate rolls were arranged vertically to save turning the piece manually through a right angle. That improved the quality as well as the speed of production. Bedson's first continuous mill was erected in Manchester in 1862 and had sixteen stands in tandem. A mill on this principle had been patented the previous year by Charles While of Pontypridd, South Wales, but it was Bedson who made it work and brought it into use commercially. A difficult problem to overcome was that as the piece being rolled lengthened, its speed increased, so that each pair of rolls had to increase correspondingly. The only source of power was a steam engine working a single drive shaft, but Bedson achieved the greater speeds by using successively larger gear-wheels at each stand.
    Bedson's first mill was highly successful, and a second one was erected at the Manchester works; however, its application was limited to the production of small bars, rods and sections. Nevertheless, Bedson's mill established an important principle of rolling-mill design that was to have wider applications in later years.
    [br]
    Further Reading
    Obituary, 1884, Journal of the Iron and Steel Institute 27:539–40. W.K.V.Gale, 1969, Iron and Steel, London: Longmans, pp. 81–2.
    LRD

    Biographical history of technology > Bedson, George

  • 15 Denny, William

    SUBJECT AREA: Ports and shipping
    [br]
    b. 25 May 1847 Dumbarton, Scotland
    d. 17 March 1887 Buenos Aires, Argentina
    [br]
    Scottish naval architect and partner in the leading British scientific shipbuilding company.
    [br]
    From 1844 until 1962, the Clyde shipyard of William Denny and Brothers, Dumbarton, produced over 1,500 ships, trained innumerable students of all nationalities in shipbuilding and marine engineering, and for the seventy-plus years of their existence were accepted worldwide as the leaders in the application of science to ship design and construction. Until the closure of the yard members of the Denny family were among the partners and later directors of the firm: they included men as distinguished as Dr Peter Denny (1821(?)–95), Sir Archibald Denny (1860–1936) and Sir Maurice Denny (1886– 1955), the main collaborator in the design of the Denny-Brown ship stabilizer.
    One of the most influential of this shipbuilding family was William Denny, now referred to as William 3! His early education was at Dumbarton, then on Jersey and finally at the Royal High School, Edinburgh, before he commenced an apprenticeship at his father's shipyard. From the outset he not only showed great aptitude for learning and hard work but also displayed an ability to create good relationships with all he came into contact with. At the early age of 21 he was admitted a partner of the shipbuilding business of William Denny and Brothers, and some years later also of the associated engineering firm of Denny \& Co. His deep-felt interest in what is now known as industrial relations led him in 1871 to set up a piecework system of payment in the shipyard. In this he was helped by the Yard Manager, Richard Ramage, who later was to found the Leith shipyard, which produced the world's most elegant steam yachts. This research was published later as a pamphlet called The Worth of Wages, an unusual and forward-looking action for the 1860s, when Denny maintained that an absentee employer should earn as much contempt and disapproval as an absentee landlord! In 1880 he initiated an awards scheme for all company employees, with grants and awards for inventions and production improvements. William Denny was not slow to impose new methods and to research naval architecture, a special interest being progressive ship trials with a view to predicting effective horsepower. In time this led to his proposal to the partners to build a ship model testing tank beside the Dumbarton shipyard; this scheme was completed in 1883 and was to the third in the world (after the Admiralty tank at Torquay, managed by William Froude and the Royal Netherlands Navy facility at Amsterdam, under B.J. Tideman. In 1876 the Denny Shipyard started work with mild-quality shipbuilding steel on hulls for the Irrawaddy Flotilla Company, and in 1879 the world's first two ships of any size using this weight-saving material were produced: they were the Rotomahana for the Union Steamship Company of New Zealand and the Buenos Ayrean for the Allan Line of Glasgow. On the naval-architecture side he was involved in Denny's proposals for standard cross curves of stability for all ships, which had far-reaching effects and are now accepted worldwide. He served on the committee working on improvements to the Load Line regulations and many other similar public bodies. After a severe bout of typhoid and an almost unacceptable burden of work, he left the United Kingdom for South America in June 1886 to attend to business with La Platense Flotilla Company, an associate company of William Denny and Brothers. In March the following year, while in Buenos Aires, he died by his own hand, a death that caused great and genuine sadness in the West of Scotland and elsewhere.
    [br]
    Principal Honours and Distinctions
    President, Institution of Engineers and Shipbuilders in Scotland 1886. FRS Edinburgh 1879.
    Bibliography
    William Denny presented many papers to various bodies, the most important being to the Institution of Naval Architects and to the Institution of Engineers and Shipbuilders in Scotland. The subjects include: trials results, the relation of ship speed to power, Lloyd's Numerals, tonnage measurement, layout of shipyards, steel in shipbuilding, cross curves of stability, etc.
    Further Reading
    A.B.Bruce, 1889, The Life of William Denny, Shipbuilder, London: Hodder \& Stoughton.
    Denny Dumbarton 1844–1932 (a souvenir hard-back produced for private circulation by the shipyard).
    Fred M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuilding, Cambridge: PSL.
    FMW

    Biographical history of technology > Denny, William

  • 16 Klic, Karol (Klietsch, Karl)

    [br]
    b. 31 May 1841 Arnau, Bohemia (now Czech Republic)
    d. 16 November 1826 Vienna, Austria
    [br]
    Czech inventor of photogravure and rotogravure.
    [br]
    Klic, sometimes known by the germanized form of his name Karl Klietsch, gained a knowledge of chemistry from his chemist father. However, he inclined towards the arts, preferring to mix paints rather than chemicals, and he trained in art at the Academy of Painting in Prague. His father thought to combine the chemical with the artistic by setting up his son in a photographic studio in Brno, but the arts won and in 1867 Klic moved to Vienna to practise as an illustrator and caricaturist. He also acquired skill as an etcher, and this led him to print works of art reproduced by photography by means of an intaglio process. He perfected the process c.1878 and, through it, Vienna became for a while the world centre for high-quality art reproductions. The prints were made by hand from flat plates, but Klic then proposed that the images should be etched onto power-driven cylinders. He found little support for rotary gravure, or rotogravure, on the European continent, but learning that Storey Brothers, textile printers of Lancaster, England, were working in a similar direction, he went there in 1890 to perfect his idea. Rotogravure printing on textiles began in 1893. They then turned to printing art reproductions on paper by rotogravure and in 1895 formed the Rembrandt Intaglio Printing Company. Their photogra-vures attracted worldwide attention when they appeared in the Magazine of Art. Klic saw photogravure as a small-scale medium for the art lover and not for mass-circulation publications, so he did not patent his invention and thought to control it by secrecy. That had the usual result, however, and knowledge of the process leaked out from Storey's, spreading to other countries in Europe and, from 1903, to the USA. Klic lived on in a modest way in Vienna, his later years troubled by failing sight. He hardly earned the credit for the invention, let alone the fortune reaped by others who used, and still use, photogravure for printing long runs of copy such as newspaper colour supplements.
    [br]
    Further Reading
    Obituary, 1927, Inland Printer (January): 614.
    Karol Klic. vynálezu hlubotisku, 1957, Prague (the only full-length biography; in Czech, with an introduction in English, French and German).
    S.H.Horgan, 1925, "The invention of photogravure", Inland Printer (April): 64 (contains brief details of his life and works).
    G.Wakeman, 1973, Victorian Book Illustration, Newton Abbot: David \& Charles, pp. 126–8.
    LRD

    Biographical history of technology > Klic, Karol (Klietsch, Karl)

См. также в других словарях:

  • Quality of Working Life — ˌQuality of ˌWorking ˈLife , ˌQuality of ˈWork Life abbreviation QWL noun [uncountable] HUMAN RESOURCES the feeling that an employee gets from their job and whether or not they feel happy or satisfied: • The survey is part of an ongoing project… …   Financial and business terms

  • Quality of working life — another method for measurement of job satisfaction based on Hackman and Oldham theory I came across is to measure the 5 dimensions of job through a survey and then determine the JDS (job diagnostic survey) rating through this equation (Variety +… …   Wikipedia

  • working life — ˌworking ˈlife noun working lives PLURALFORM [countable] HUMAN RESOURCES the part of your adult life when you work: • Geoff spent all his working life with the same company. * * * working life UK US noun ► [C] WORKPLACE the …   Financial and business terms

  • Quality of life — For other uses, see Quality of life (disambiguation). The term quality of life is used to evaluate the general well being of individuals and societies. The term is used in a wide range of contexts, including the fields of international… …   Wikipedia

  • life — W1S1 [laıf] n plural lives [laıvz] ▬▬▬▬▬▬▬ 1¦(time somebody is alive)¦ 2¦(state of being alive)¦ 3¦(way somebody lives)¦ 4¦(particular situation/job)¦ 5 social/personal/sex etc life 6¦(human existence)¦ 7¦(time when something exists/works)¦ …   Dictionary of contemporary English

  • life — [ laıf ] (plural lives [ laıvz ] ) noun *** ▸ 1 time from birth to death ▸ 2 way of living, experience ▸ 3 state of being alive ▸ 4 living things ▸ 5 time something exists/lasts ▸ 6 activity/excitement ▸ 7 in games ▸ 8 life imprisonment ▸ +… …   Usage of the words and phrases in modern English

  • life — /laIf/ noun plural lives /laIvz/ PERIOD OF LIVING 1 (C, U) the period between a person s birth and death during which they are alive: Learning goes on throughout life. | You have your whole life ahead of you. | in your life: I d never seen the… …   Longman dictionary of contemporary English

  • life — noun 1 living things ADJECTIVE ▪ intelligent ▪ Is there intelligent life on other planets? ▪ animal, bird, human, insect, plant …   Collocations dictionary

  • life */*/*/ — UK [laɪf] / US noun Word forms life : singular life plural lives UK [laɪvz] / US Metaphor: Life is like a journey, and your experiences are like different parts of a journey. Dying is like travelling to another place. The baby arrived just after… …   English dictionary

  • Life stance — or lifestance refers to a person s relation with what he or she accepts as of ultimate importance, the presuppositions and theory of this, and the commitments and practice of working it out in living.pectrumThe term encompasses both religions and …   Wikipedia

  • Life extension — refers to an increase in maximum or average lifespan, especially in humans, by slowing down or reversing the processes of aging. Average lifespan is determined by vulnerability to accidents and age related afflictions such as cancer or… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»